An Easy Test for Congruence Modularity

نویسندگان

  • TOPAZ DENT
  • KEITH A. KEARNES
چکیده

We describe an easy way to determine whether the realization of a set of idempotent identities guarantees congruence modularity or the satisfaction of a nontrivial congruence identity. Our results yield slight strengthenings of Day’s Theorem and Gumm’s Theorem, which each characterize congruence modularity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NOTES ON CONGRUENCE n-PERMUTABILITY AND SEMIDISTRIBUTIVITY

In [1] T. Dent, K. Kearnes and Á. Szendrei define the derivative, Σ′, of a set of equations Σ and show, for idempotent Σ, that Σ implies congruence modularity if Σ′ is inconsistent (Σ′ |= x ≈ y). In this paper we investigate other types of derivatives that give similar results for congruence n-permutable for some n, and for congruence semidistributivity. In a recent paper [1] T. Dent, K. Kearne...

متن کامل

All congruence lattice identities implying modularity have

For an arbitrary lattice identity implying modularity (or at least congruence modularity) a Mal’tsev condition is given such that the identity holds in congruence lattices of algebras of a variety if and only if the variety satisfies the corresponding Mal’tsev condition. This research was partially supported by the NFSR of Hungary (OTKA), grant no. T034137 and T026243, and also by the Hungarian...

متن کامل

Reflexive Relations and Mal’tsev Conditions for Congruence Lattice Identities in Modular Varieties

Based on a property of tolerance relations, it was proved in [3] that for an arbitrary lattice identity implying modularity (or at least congruence modularity) there exists a Mal’tsev condition such that the identity holds in congruence lattices of algebras of a variety if and only if the variety satisfies the corresponding Mal’tsev condition. However, the Mal’tsev condition constructed in [3] ...

متن کامل

On the Complexity of Some Maltsev Conditions

This paper studies the complexity of determining if a finite algebra generates a variety that satisfies various Maltsev conditions, such as congruence distributivity or modularity. For idempotent algebras we show that there are polynomial time algorithms to test for these conditions but that in general these problems are EXPTIME complete. In addition, we provide sharp bounds in terms of the siz...

متن کامل

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011